If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2-150t+240=0
a = 15; b = -150; c = +240;
Δ = b2-4ac
Δ = -1502-4·15·240
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-90}{2*15}=\frac{60}{30} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+90}{2*15}=\frac{240}{30} =8 $
| 4(x+20)=3×+84 | | x+3x-30=90 | | 1-x/5=x+1/2-1 | | −3x+5=17 | | 5(2x+3)=3(3x | | 5x+5/2x=180x | | 16/64=x/48 | | 5x-40=3x-20 | | 4x+3x=33 | | 2/9x+1=-2/3x-2 | | 3(x+5)+2=-28 | | 3-2y+4y=11 | | 14b–9b=35 | | 3x-2=18-× | | 2(2x-7)=7x+1 | | x=(1/2)(16-8) | | (-16)+n/2=35 | | −7(x−2)+1=15−7x | | 3(x–5)=x–7 | | t=18/28 | | 10=3(x+2)=31 | | t=9/14 | | 3x-40=2x+20 | | T=14/9m | | 3x-125=2x | | 25(2−4x)2−25=24 | | X+71=3x+47 | | 110+2x=30 | | 3x+51=2x+54 | | 3.5=1.2g | | 89(7x-7)=8(4x+2) | | 2x+23=x+38 |